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[. INTRODUCTION

Highway -barriers, including concrete median barriers (CMB's) have
primarily been designed for automobiles. Since automobiles are the
largest segment of the highway vehicle population, engineers have
considered the welfare of their occupants of primary importance, all the
time realizing that longitudinal barriers such as CMB's would not always
be effective for all segments of that population.

Efforts are now being made to extend the safety improvements offered
by longitudinal barriers to vehicles other than conventional automobiles.
Efforts to contend with the growing numbers of small automobiles are
indications of this, as are several new designs of barriers to accommodate
tractor semitrailers.

Other segments of the population are utility vehicles, pickups and
straight trucks. Perhaps because CMB's produce a more obvious three
dimensicnal response of a vehicle than do many other longitudinal barriers
and because utility vehicles, pickups and straight trucks have an atypical
center of gravity height to wheel base ratio, it was hypothesized that
these vehicles might be more susceptible to rolling during a CMB collision
than are automobiles. This hypothesis is being studied analytically
{using the GUARD code), but full-scale crash tests are needed to validate
the analytical studies. In response to this need, the crash tests and
vehicle. parametric measurements presented here were conducted,

L



I1. DOCUMENTATION OF TESTS
General .. -~ - |

The purpose of these tests was to develop full-scale crash test data
for comparison with computer simulations and to proVide data for
determining the performance of concrete median barriers in tests with
special vehicles other than standard passenger automobiles.

After study of the characteristics of utility vehicles reported by
Snyder et al, and consideration of the different sizes and suspension
conditions of pickups and stfaighi trucks, the vehicles and test
conditions shown by tabie 1 were selected.(l)

When considering the roll stability of vehicles, the term T/2H is
often used., This is the ratio of half the vehicle track width to the
center of gravity. This ratio is numerically equivalent to the lateral
acceleration in g's required to roll the vehicle, if the vehicle is

(2) Although suspension and dynamic response

considered a rigid body.
characteristics render the ratio T/Z2H a rough estimate at best, it appears
to be useful as a qualitative estimate of relative roll stability. Note
all the vehicles tested here have values of T/2H less than 1.4 (see table
1). The value 1.4 is common for automobiles. As a further indication of
the way these static stability ratios compare with a large spectrum of
vehicles figure 1 is shown. The stability ratios of the utility vehicles
«nd pickups tested are somewhat toward the upper end of the spectrum.
Even so, all these vehicles would be judged less stable in the r011 made
than the average automobile.

Discussion of the tests described in subsequent sections will focus

on roll stability.

Test Barrier Installation *

A seéﬁénggi;concrete median barrier was instalied such that the base
would not move laterally and the entire barrier would function similar to
a permanent rigid barrier for Tests 3825-10 through 3825-17. The test
installation consisted of 12.0-ft (3.7-m) reinforced concrete median
barrier (CMB) sectionsljoined by a steel T-Lock at the base of each joint.
Details of the T-Lock are shown in figure 2. Ten CMB sections were
combined to form an installation 120.0 ft (36.7 m) %n_length. The barrier

2
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system was placed on hot-mix asphalt surface with a 2-in (5.1-cm) asphalt
back-up G the_rear of the barrier (see figures 3 and 4).

Instrumentation and Data Analysis

Test vehicles were equipped with triaxial accelerometers mounted near
the center of gravity. VYaw, pitch and roll were measured by on-board
instruments. The electronic signals were telemetered to a base station
for recording on magnetic tape and for display on a real-time strip chart.
Provision was made for transmission' of calibration signals before and
after the test, and an accurate time reference signal was simultaneously
recorded with the data.

Contact switches near the impact area were actuated by the vehicle to
indicate the elapsed time over a known distance to provide measurement of
impact velocity. The initial contact also produced an "event" mark on the
data record to establish the instant of impact.

Data from the electronic transducers were digitized, using a micro-
computer, for analyses and evaluation of performance. Several computer
programs on the Amdhal 470/V6/V8 mainframe computer were used to process
various types of data from the test vehicle.

The VEHICLE computer program uses data from the three vehicle-mounted
linear accelerometers to compute accelerations, areas enclosed by
jcceleration-time curves, changes 1in velocity, changes in wmomentum,
instantaneous fordes, average forces, and maximum average accelerations
over 0.050-sec intervals in each of the three directions. The maximum
resultant 0,050-sec average vehicle acceleration was also computed by the
VEHICLE program. Several methods exist for computing this resultant
value. The one used for the data presented here may be described as
follows: Resultant 0.050-sec average accelerations are computed by taking
the vector resultant of 0.050-sec average accelerations at corresponding
times in.each ~of the three directions with the 0.050-sec interval
beginning at impact. The process is repeated with the time interval
shifted 0.001 sec until the duration of impact is covered. The maximum
value from these computations is sought and reported as the maximum
- resultant 0.050-sec average vehicle acceleration. The VEHICLE program
also plots acceleration versus time curves for the longitudinal, lateral,

6



(8L pue ;7 saunbty 835  “onu1 1ybreaas q| 0008l

Ue JO 3sed 9yl Ul UOoLIIB[JIPp J3Lldadeq JuedLjLubls juanaad

0} pappe Sem 3.4n3dnuls dn ydoeq [3d)s e /1-G28E 1591

Ul "91-G28€ ubnouyy Q1-G28E $SIS23 U0 Pasn sem ,33Lg
uoLle[e3sul, SLYl) “33LS UOLIP[|PISU] }JO UOLIIAS SSOU) '€ 2aunbi4

J91110g 918Jou09) Budold o)
0lid 00D No0) joydsy Kiddy

_ ‘poIDId S| Jelsng
J01)y pio7] og o) ‘dnjeas
2/\ 30 doluQ dnyoog xiwioH 2

|

301S 1OVdWI

7
9:
1

XIWIoH dnjaaan .2/l 'xoiddy



8




and vertical directions.

The -PLOTANGLE program uses the digitized data from the yaw, pitch,
and roll rate data to compute angular displacement (degrees) at 0.001 sec
and then instructs the Versatec Plotter (Model 1200 Electrostatic Plotter)
to produce a reproducible plot: yaw, pitch, and roll versus time. It
should be noted that these angular displacements are sequence dependent
with the sequence being yaw - pitch - roll for the data presented herein.
These displacements are in reference to the vehicle-fixed coordinate
system with the 1nitial position aﬁd orientation of the vehicle-fixed
coordinate system being that which existed at initial impact.

Still and motion photography were used to document the test, to
obtain time-displacement data, and to observe phenomena occurring during
the impact. Still photography was used to record conditions of the test
vehicles and test installation before and after the test. Motion photo-
graphy was used to record the collision event. Typical camera positions
for the tests are shown in figure 5.



Approach Path

N

Camera Position and Coverage
1 High Speed Camera
Overnead: -10' +40' ’
2 High Speed Camera
Perpendicular to Barrier
-10' +40'
k! High Speed Camera

Perpendicular to Vehicle
Approach Path: 1157

4 High Speed Camera
Longitudinal *10' at Impact
5 Documentary Camera
N Impact
e

Figure 5. Typical camera positions.
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Details of Individual Tests
JE— TEST REPORT NO. 3825-10 |
Vehicle: 1966 Ford Bronco, Vehicle Weight 3,598 lbs
Barrier: 32 in high Concrete Median Barrier

Impact Conditions: 7 degrees, along length of need.
60 mph

Test Description »

A 1966 Ford Bronco (shown in figure 6) was directed into the barrier
at 60.6 mph (97.5 kph) and 6.5 degrees. Test inertia mass of the vehicle
was 3,598 1b (1,633 kg). The vehicle was free-wheeling ahd unrestrained
at impact.

The vehicle impacted the barrier 1.0 ft (0.3 m) upstream af the joint
between segments 3 and 4. The tire path moved up the side of the CMB
reaching a maximum height of 2.1 ft (0.6 m) approximately 12.0 ft (3.7 m)

from impact. Total length of contact was approximately 24.0 ft (7.3 m).
The vehicle was redirected and exited the barrier at 0.305 sec with exit
angle of O degrees. Subsequently, the vehicle impacted the barrier again
at 0,727 sec, rode off the end of the barrier and spun around.

As shown in figure 7, the vehicle sustained slight damage to the left
front quarter. The left end of the bumper was bent back slightly.

The barrier received minor cosmetic damage to segments 3 and 4 as
shown in figure 8. The tire path of. the initial impact is plotted in
figure 9. There were alsao tire marks on segments 9 and 10 where the
vehicle impacted the barrier a second time. The top of the barrier moved
0.05 ft (0.02 m) during the test but retained a set of only 0.02 ft
(0.01 m). |

= Test Resuits
A summaF}“Bfrtest data is presented in figure 10. Figure 1l consists
of sequential photographs. Vehicle accelerometer traces are displayed in

figures 12 through 14, and vehicle angular displacements in figure 15.

The maximum 50-msec average accelerations were -1.8 g longitudinal
and -2.6 g lateral. Maximum 50-msec average vector resultant acceleration
was 3.2 g.

11




NCHRP Report 230 describes occupant risk evaluation criteria and
places 1ifits_on these for acceptable performance for tests conducted with
standard: passenger automobiles at 15-degree impact ang1es.(3) These
acceptance limits do not apply to the test reported herein but were
computed and reported for information only. The normalized
~ occupant/compartment impact velocity in the longitudinal direction was 6.7
fps (2.0 m/s) and 11.3 fps (3.4 m/s) in the lateral direction. The
maximum 10-msec average 1ongitud1na1ioccupant ridedown acceleration was
-2.3 g, and -2.2 g for the lateral direction. |

The barrier redirected the vehicle and detached elements did not
penetrate the occupant compartment. The vehicle remained upright during
and after impact. Exit angle was 0.0 degrees and vehicle change in speed
at loss of contact was 8.0 mph (12.9 kph).

12
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Vehicle after test 3825-10.

7.

Figure
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0.152 sec
Figure 11. Sequential photographs for test 3825-10.
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0.303 sec

Figure 11. Sequential photographs for test 3825-10 (continued).
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for test 3825-10.
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Figure 13 Vehicle lateral accelerometer trace
for test 3825-10.
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(V4 . .
’ Axes are vehicle fixed.
Sequence for determining
srien i} Y AW orientation is:

\\<:;\~ - 1. Yaw
&L L -573/ ks

4.00

Roll

2.00

TIME
0.30

il
o
O

Pitch

(DEG@FES]

-2.00

1

-4.00

Yaw

f

s DISPLACEMENT

-6.00

1

(@}
‘. ,
Figure 15. Vehicle angular disp1acements for test 3825-10.
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TEST REPORT NO. 3825-11
Vetricle: 1966 Ford Bronco, Vehicle Weight 3,598 1bs
Barrier: 32 in high Concrete Median Barrier

Impact Conditions: 15 degrees, along length of need.
60 mph

Test Description
The 1966 Ford Bronco used in Test 3825-10 (see figure 16) was
directed into the barrier at-60.7 mph (97.7 kph) and 14.5 degrees. Test
inertia mass of the vehicle was 3,598 1b (1,633 kg). The vehicle was
free-wheeling and unrestrained at impact.

The vehicle dimpacted the barrier approximately 2.0 ft (0.6 m)
downstream of the joint between segments 3 and 4. The tire path on the
. barrier face is shown in figure 17. The top of the path reached the top
of the barrier approximately 2.0 ft (0.6 m) downstream of the impact
point. Tire marks extended to the upper edge of the barrier for a
distance of about 7.0 ft (2.1 m) and the bottom of the tire marks formed a
curved path as shown in figures 17 and 18. Total length of contact was
approximately 13.8 ft (4.2 m). The vehicle was redirected and exited the
barrier at 0.286 sec with exit angle of 1.2 degrees. The speed of the
vehicle at loss of contact was 52.0 mph (83.7 kph).

The barrier received damage to segment 4 as shown in figure 18. The
upper corners of joints 3-4 and 4-5 were cracked and broken. The top of
the barrier moved 0.11 ft (0.03 m) during the test but returned to its
original position afterwards.

As shown in figure 19, the vehicle sustained minimal damage to the
left front quarter. The left front tire was deflated and the rim bent.
The left corner of the rear bumper was alsc pu]léd back. |

P

Test Results

A summary of test data is presented in figure 20, Figure 21 consists
of sequential photographs. Vehicle accelerometer traces ‘are displayed in
figures 22 through 24, and véhicle angular displacements in figure 25.

The maximum 50-msec average accelerations were -4.9 g longitudinal
and -7.2 g lateral. Maximum-50 msec average vector resultant acceleration

23



was 8.9 g. :
NCHRP Report 230 describes occupant risk evaluation criteria and

places 1imits on these for acceptable performance for tests conducted with
standard passenger automobiles at 15-degree impact ang]es.(3) These
acceptance limits do not apply to the test reported herein but were
computed and reported for information only. The normalized
aoccupant/compartment impact velocity in the Tongitudinal direction was
14.1 fps (4.3 m/s) and 16.6 fps (5.1 m/s) in the lateral direction. The
max imum 10-mséc average 1ongitudina1‘occupant ridedown acceleration was
-5.7 g, and -8.2 g for the lateral direction.

The barrier redirected the vehicle and detached elements did not
penetrate the occupant compartment. The vehicle remained upright dufing
and after impact. Exit angle was 1.2 degrees and vehicle change in speed
at loss of contact was 8.7 mph’(14.0 kph).

24



Figure 16. Vehicle before test 3825-11.
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Figure

18. Barrier after test 3825-17.
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Vehicle after test 3825-11.
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Figure
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- 0.172 sec
Figure 21. Sequential photographs for test 3825-11.
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0.400 sec
Figure 21. Sequential photographs for test 3825-11 (continued).
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for test 3825-11.
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LATERAL ACCELERATION (G)
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PICH 'Y AW Axes are vehicle fixed.

\\‘\\\ Sequence for determining
orientation is:

1. Yaw
2. Pitch
0‘” 3. Roll
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Figure 25. Vehicle angular displacements for test 3825-11.
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. TEST REPORT NQ. 3825-12
- Vemicle: 1974 Datsun Pickup, Vehicle Weight 2,434 Tbs
Barrier: 32 in high Concrete Median Barrier

Impact Conditions: 15 degrees, along length of need.
60 mph

‘ Test Description
A 1974 Datsun Pickup (shown in figure 26) was directed into the
barrier at 61.0 mph (98.2 kph) and 15.0 degrees. Test inertia mass of the
vehicle was 2,434 1b (1,105 kg). The vehicle was free-wheeling and

unrestrained at impact,

The vehicle impacted the barrier approximately 3.0 ft (0.9 m)
downstream of the joint between segments 3 and 4. The tire path on the
barrier face is shown in figure 27. The top of the path reached the top
of the barrier approximately 0.5 ft (0.2 m) downstream of the impact
point. Tire marks extended to the upper edge of the barrier for a
distance of about 7.5 ft (2.3 m) before fading out as shown in figures 27
and 28. Total length of contact was approximately 10.5 ft (3.2 m). The
vehicle was redirected and exited the barrier at 0.284 sec with exit angle
of 2.0 degrees. The speed of the vehicle at loss of contact was 54.0 mph
(86.9 kph). - ‘ '

The barrier received damage to segments 3 and 4 with minimal cracking
- at joints 3-4 and 4-5. Damage to the barrier is shown in figure 28. The
barrier showed no measurable movement during the test.

As shown in figure 29, the vehicle sustained minimal damage to the
left front quarter. The left front tire was deflated and the rim bent
slightly.

= Test Results

A summary-g? test data is presented in figure 30. Figure 31 consists
of sequential photographs. Vehicle accelerometer traces are displayed in
figures 32 through 34, and vehicle angular displacements in figure 35. -

The maximum 50-msec average accelerations were -4.1 g longitudinal
and -10.1 g lateral. Maximum 50-msec average vector resultant
acceleration was 11.2 g.
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NCHRE—_Report 230 describes occupant risk evaluation criteria and
places limits on these for acceptable performance for tests conducted with
~standard passenger automgobiles at 15-degree impact angles.(3) These
acceptance 1limits do not apply to the test reported herein but were
computed and reported for information only. The normalized
occupant/compartment impact velocity in the 1longitudinal direction was
13.1 fps (4.0 m/s) and 19.9 fps (6.1 m/s) in the lateral direction. The
maximum 10-msec_average Tongitudinal occupant ridedown acceleration was
0.9°g, and -4.9 g for the Jatera] direction,

The barrier redirected the vehicle and detached elements did not
penetrate the occupant compartment. The vehicle remained upright during
and after impact. Exit angle was 2.0 degrees and vehicle change in speed
at loss of contact was 7.0 mph (11.3 kph). |
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Figure 26 Vehicle before test 3825-12.
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Figure 28. Barrier after test 3825-12.
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Figure 29, Vehicle after test 3825-12.
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0.000 sec

0.136 sec
Figure 31. Sequential photographs for test 3825-12.
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0.338 sec

Figure 31. Sequential photographs for test 3825412 (continued).
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Figure 32. Vehicle longitudinal accelerometer
trace for test 3825-12.
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for test 3825-12.

45

0.50



LONGITUDINAL ACCELERATION (G)

20

—
(=)

<O

]
a—
[ats]

Class 180 Filter

o Max 0.050 sec Ava. 4.46 g

0.00 0.10 . 0.20 0.30 n.40 0.50

TIME (SECONDS)

Figure 34. Vehicle longitudinal accelerometer trace for
test 3825-12.

46




(DEGREES)

] -5.00

DISPLACEMENT
-10.00

-15.00

|

0.0

L

-20.00

Ro11
TIME (SECONDGS]
OF2O oiuo ngO
Pitch
Yaw

Axes are vehicle fixed.
Sequence for determining
orientation is:

1. Yaw
2. Pitch
3. Roll

Figure 35. Vehicle angular displacements for test 3825-T2.
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— TEST REPORT NO. 3825-13 »
- VéRicle: 1977 Ford F250 Pickup, Vehicle Weight 4,490 1bs
Barrier: 32 in high Concrete Median Barrier

Impact Conditions: 7 degrees, along length of need.
60 mph

Test Description
A 1977 Ford F250 Pickup {see figure 36) was directed into the barrier
at 57.3 mph (92.2 kph) and 6.5 degrees. Test inertia mass of the vehicTe
was 4,490 1b (2,038 kg). The vehicle was free-wheeling and unrestrained

at impact.

The vehicle impacted the barrier approximately 2.0 ft (0.6 m)
downstream of the joint between segments 3 and 4. The tire path on the
barrier face is shown in figure 37. The top of the path reached a maximum
height of 2.2 ft (0.7 m) approximately 11.6 ft (3.5 m) downstream of the
impact point. Total length of contact was approximately 16.8 ft (5.1 m).
The vehicle was redirected and exited the barrier at 0.363 sec with exit
angle of 4.0 degrees. The speed of the vehicle at loss of contact was
50.6 mph (81.3 kph).

The barrier received damage to segments 3 through 5 as shown in
figure 38. The upper corners of joints 3-4 and 4-5 were cracked and
broken. The top of the barrier moved 0.11 ft {0.03 m) during the test but
ceturned to its original position afterwards. '

As shown in figure 39, the vehicle sustained minimal damage to the
left front quarter. The left front corner of the bumper was pushed back.

Test Results
A summary of test data is presented in figure 40. Figure 41 consists

of sequential photographs. Vehicle accelerometer traces are displayed in
figures 42 £hf2§§h 44, and vehicle angﬁ]ar displacements in figure 45.

The maximum 50-msec average accelerations were -1.5 g longitudinal
and -3.1 g lateral.  Maximum 50-msec average vector resultant acceleration
was 8.3 g. ' _

NCHRP Report 230 describes occupant risk evaluation criteria and
places Timits on these for acceptable performance for tests conducted with
standard -passenger automobiles at 15-degree impact angles.(3) These
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acceptancg _limits do not apply to the test reported herein but were
computed - and reported for information only. The normalized
occupant/compartment impact velocity in the longitudinal direction was 7.4
fps (2.3 m/s) and 10.8 fps (3.3 m/s) in the lateral direction. The
maximum lO-msec average longitudinal occupant ridedown acceleration was
-0.4 g, and -5.3 g for the lateral direction.

The barrier redirected the vehicle and detached elements did nct
penetrate the occupant compartment. The vehicle remained upright during
and after impact. Exit angle was 4.0 degrees and vehicle change in speed
at loss of contact was 6.7 mph (10.8 kph).

I
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Figure 36. Vehicle before test 3825-13.
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Fiqure 38. Barrier after test 3825-13,
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Figure 39. Vehicle after test 3825-13.
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0.180 sec
Figure 41. Sequential nhotographs for Test 3825-13.
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0.425 sec

Figure 4). Sequential photographs for test 3825-13 {continued).
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Figure 42, Vehicle longitudinal accelerometer trace
for test 3825-13.
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Figure 43. Vehicle lateral accelerometer trace
for test 3825-13.
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Figure 44. Vehicle vertical acce]erometer trace
for test 3825-13.
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Axes are vehicle fixed.

., TPOIOH YAW Sequence for determining
\\\\\\ <:__;:> orientation is:
L 1. Yaw
== < 2. Pitch
. 3. Roll
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.00 0.50
4
Pitch
o Rol1l
Q
o
I_\]
w
wJ
tud
Co
o l=]
i
T
—
Z o
o
Z -
W
o
a
—
o
B
—_—:l e
O+
- —'ﬁ:o
o Yaw
o
T_

Figure 45. Vehicle angular displacements for "test 3825-13.
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i TEST REPORT NO. 3825-14
© Vetrtele: 1977 Ford F250 Pickup, Vehicle Weight 4,490 1bs
Barrier: 32 in high Concrete Median Barrier

Impact Conditions: 15 degrees, along length of need.
60 mph

Test Description
The 1977 Ford F250 Pickup used in Test 3825-13 (see figure 46) was
directed into the barrier at 58.1 mph (93.5 kph}) and 14.0 degrees. Test
inertia mass of the vehicle was 4,490 1b {2,038 kg). The vehicle was
free-wheeling and unrestrained at impact.

The vehicle impacted the barrier approximately 4.0 ft (1.2 m)
downstream of the joint between segments 3 and 4. The tire path on the
barrier face is shown in figure 47. The top of the path reached the top
of the barrier approximately 6.5 ft (2.0 m) downstream of the impact
point. Tire marks extended to or near the upper edge of the barrier for a
distance of about 6.0 ft (1.8 m) as shown in figures 47 and 48. Total
length of contact was approximately 17.0 ft (5.2 m). The vehicle was
redirected and exited the barrier at 0.418 sec with exit angle of 4.0
degrees. The. speed of the vehicle at loss of contact was 46.8 mph (75.3
. kph).

The barrier received damage to segments 3 through 5 as shown in
figure 48. The upper corners of joints 3-4 and 4-5 were cracked and
broken, The top of the barrier moved 0.12 ft (0.04 m) during the test but
returned to its original position afterwards.

As shown in figure 49, the vehicle sustained damage to the left side.
The left front and left rear tires were deflated and the rims bent,

= Test Results

—

A summary of test data is presented in figure 50. Figure 51 consists

of sequential photographs. Vehicle accelerometer traces are displayed in
figures 52 through 54, and vehicle angular displacements in figure 55.

The maximum 50-msec average accelerations were -5.3 g longitudinal
and -6.3 g lateral. Maximum 50-msec average véctor resultant acceleration
was 8.3 g.
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NCHRP Report 230 describes occupant risk evaluation criteria and
places 1imits—on these for acceptable performance for tests conducted with
standard passenger automobiles at 15-degree impact ang]es.(s) These
acceptance limits do not apply to the test reported herein but were
computed and repbrted for  information only. The  normalized
occupant/compartment impact velocity in the longitudinal direction was
15.1 fps (4.6 m/s) and 14.7 fps (4.5 m/s) in the lateral direction. The
maximum 10-msec average longitudinal occupant ridedown acceleration was
5.4 g, and ~12.4 g for the lateral direction.

The barrier redirected the vehicle and detached elements did not
penetrate the occupant compartment. The vehicle remained upright during
and after impact. Exit angle was 4.0 degrees and vehicle change in speed
at Toss of contact was 11.3 mph (18.2 kph).

Fo
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Figure 46.

Vehicle before test 3825-14.
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Figure 48. Barrier after test 3825-14.
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Figure 49. Vehicle after test 3825-14.
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Figure 51.

0.210 sec ,
Sequential photographs for test 3825-14.
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0.497 sec

Figure 51, Sequential Photograohs for test 3825-14 (continued).
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Vehicle longitudinal accelerometer
trace for test 3825-14,
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Figuré 53. Vehicle lateral accelerometer trace
for test 3825-14.
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+2 Axes are vehicle fixed.
Sequence for determining

. i} - grientation is:
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Figure 55. Vehicle angular displacements for test 3825-14.
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‘ . TEST REPORT NO. 3825-15
“Vehicle: 1974 Ford F250 Pickup, Vehicle Weight 4,540 1bs
Barrier: 32 in high Concrete Median Barrier

Impact Conditions: 22 degrees, along length of need.
60 mph '

Test Description
A 1974 Ford F250 Pickup (see figure 56) was directed into the barrier
at 60.2 mph (96.9'kph) and 21.5 degrees. Test inertia mass of the vehicle
was 4,540 1b (2,061 kg). The vehicle was free-wheeling and unrestrained

at impact.

The vehicle impacted the barrier approximately 3.5 ft (1.1 m)
downstream of the joint between segments 3 and 4. The vehicle rode up the
face of the CMB and started rolling away from the barrier. The vehicle
left the barrier at about 0.370 sec after. impact and had rolled
approximately 30 degrees. As the vehicle left the barrier it continued to
roll and subsequently touched ground on 1its right side and slid
approximately 150.0 ft (45.7 m), ' .

The tire path on the barrier face is shown in figure 57. The top of
the path reached the top of the barrier approximately 3.0 ft (0.9 m)
downstream of the impact point. . Tire marks extended to the upper edge of
the barrier for a distance of over 12.0 ft (3.7 m). Total length of
contact was approximately 16.0 ft (4.9 m).

Segment 4 had tilted back during impact causing the concrete at the
joints on each end to break off, exposing the channel in the T-lock as
shown in figure 58, The segment came to rest on some of these pieces of
concrate elevating it approximately 2 in (5.1 cm). The T-lock was also
expased at joint 5-6. The top of the barrier (segment 4) moved 0.63 ft
{0.19 m) during impact and retained.a permanent deflection of 0,08 ft
(0.02 m). <

As shown in figure 59, the vehicle sustained damage to the
undercarriage. The left I[-beam (axle) was bent back, the left strut
attachment bracket was sheared from the frame and both mainframe rails
were bent. The left front tire was deflated and the rim bent (shown in
figure 60).
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Test Results
A summaryof test data is presented in figure 61. Figure 62 consists
of sequential photographs. Vehicle accelerometer traces are displayed in
figures 63 through 65, and vehicle angular displacements in figure 66.
The maximum 50-msec average accelerations were -7.0 g longitudinal
and -8.7 g lateral. Maximum 50-msec average vector resultant acceleration

was 11.4 g. :

NCHRP Report 230 describes occupant risk evaluation criteria and
places limits on these for accepfab1e performance for tests conducted with
standard passenger automobiles at 15-degree impact ang]es.(3)
acceptance limits do not apply to the test reported herein but were
computed and reported‘ for information only. The normalized

These

occupant/compartment impact velocity in the longitudinal direction was
24.2 fps (7.4 m/s), and 19.3 fps (5.9 m/s) in the lateral direction. The
maximum 10-msec average longitudinal occupant ridedown acceleration was
-3.0 g, and -11.1 g for the lateral direction.

The barrier redirected the vehicie and detached elements did not
penetrate the occupant compartment; however, the vehicle rolled as it
exited the barrier and came to rest on its right side.

b oh
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Figure 56, Vehicle before test 3825-15.
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Joint between
segments 3 and 4.

fon

Figure 58. Barrier after test 3825-15.
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Joint between
segments 4 and 5.

Joint between
segments 5 and 6.

Figure 58. Barrier after test 3825-15 (continued).
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Figure 59. Vehicle after test 3825-15, =
(Showing damage to undercarriage)
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Figure 62. Sequential photographs for test 3825-15.
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0.436 sec

Figure 62. Sequential photographs for test 3825-15 (continued),
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Figure 63. Vehicle longitudinal accelerometer trace
for test 3825-15,
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LATERAL ACCELERATION (G)

Class 180 Filter

for test 3825-15.
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ITCH 'YAW
\\\\‘\\ Axes are vehicle fixed.
Sequence for determining
orientation is:
.“o\_\- 1. Yaw
2. Pitch
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~ Figure 66. Vehicle angular displacements
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for test 3825-15.
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i TEST REPORT NOQ. 3825-16
“Vehicle: 1972 Chevrolet 4-Wheel Drive Pickup,
Vehicle Weight 4,760 1bs
Barrier: 32 in high Concrete Median Barrier

g .

Impact Conditigns: 15 degrees, along length of need.
60 mph

Test Description
A 1972 Chevrolet Cheyenne 4-wheel drive pickup (see figure 67) was
directed into the barrier at 59.7 mph (96.1 kph) and 14,5 degrees. Test
inertia .mass of the vehicle was 4,760 1b (2,161 kg). The vehicle was

free-wheeling and unrestrained at impact.

The vehicle impacted the barrier approximately 3.0 ft (0.9 m)
downstream of the joint befween segments 3 and 4. The tire path on the
barrier face is shown in figure 68. The top of the path reached the top
of the barrier approximately 2.0 ft (0.6 m) downstream of the impact
point. Tire marks extended to the upper edge of the barrier for a
distance bf over 14.0 ft (4.3 m) and the bottom of the tire marks formed a
curved path as shown in figures 68 and 69. Total length of contact was
approximately 18.0 ft (5.5 m). The vehicle was redirected and exited the
barrier at 0.405 sec with exit angle of 0.5 degrees toward the barrier.
The speed of the vehicle at loss of contact was 51.7 mph (83.2 kph).

The barrier received damage to segment 4 as shown in figure 69,
Joints 3-4 and 4-5 were chipped and broken. The top of the barrier moved
0.14 ft (0.04 m) during the test and retained a permanent set of 0.03 ft
(0.01 m). ’

As shown in figure 70, the vehicle sustained damage to the left front
quarter. The teft front tire was deflated and the rim bent. The front
axle and wheel assembly were also damaged.

= : Test Results
A summary of test data is presented in figure 71. Figure 72 consists
of seguential photographs. Vehicle accelerometer traces are displayed in |
figures 73 through 75, and vehicle angular displacements in figure 76.
The maximum 50-msec averagde accelerations were -4.4 g longitudinal

and -8.9 g lateral. Maximum 50-msec average vector resultant acceleration

89




was 10.4 g.

—t—

NCHRP Repurt 230 describes occupant risk evaluation criteria and
places limits on these for acceptable performance for tests conducted with
standard passenger automobiles at 15-degree impact ang1es.(3) Thase
acceptance limits do not apply to the test reported herein but were
computed and reported for information only. The normalized
occupant/compartment impact velocity in the longitudinal direction was
12.7 fps (3.9 m/s), and 17.5 fps (5.3 m/s) in the lateral direction. The
maximum 10-msec average longitudinal occupant ridedown acceleration was
-1.2 g, and -6.7 g for the lateral direction.

The barrier redirected the vehicle and detached elements did not
penetrate the aoccupant compartment., The vehicle remained upright during
and after impact. Exit angle was 0.5 degrees toward the barrjer and
vehicle change in speed at loss of contact was 8.0 mph (12.9 kph).
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Figure 67.

Vehicle before test 3825-16.
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Barrier after test 3825-16.

Figure 69.
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Figure 70.

Vehicle after test 3825-16,
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0.000 sec

0.070 sec

TR SRR e
0.205 sec
Figure 72. Sequential photographs for test 3825-16.
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N.275 sec

) 0.480 sec
Figure 72. Sequential photographs for test 3825 (continued).

97



LONGITUDINAL ACCELERATION (G)

Class 180 Filter

10 (‘ {— E : :
_ r:, i Max.EO.OSO sec A?g. = -4.4 gg
LI
o |l e
L l
| } A |
LL! Lﬂ/\«,ﬂ,tﬁa ﬂn/\mpﬂﬁq i -

]
) —
en ]

1
ny
o

0.00

Figure 73.

0.20 0.30 0.40
TIME (SECONDS)

Vehicle longitudinal accelerometer trace
for tast 3825-16.

98

0.50




LATERAL ACCELERATION {G)
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Figure 74. Vehicle lateral accelerometer trace
for test 3825-16.
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Figure 75. Vehicle vertical accelerometer trace
for test 3825-16.
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Figure 76. Vehicle angular displacements for test 3825-16.
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_ TEST REPORT NO. 3825-17
Vehicle: 1973 Ford 2-1/2-ton Truck
Barrier: 32 in high Concrete Median Barrier

Impact Conditions: 15 degrees, along length of need.
: 60 mph :

Test Description

For this test a steel back up structure was added to the rear side of
the barrier as shown in figure 77. This was added to prevent significant
deflection of the barrier when impacted by the heavy vehicle. A 1973 Ford
2-1/2-ton truck (see figure 78 and 79) was directed into the barrier at
60.1 mph (96.7 kph) and 15.0 degrees. Empty weight of the vehic]e‘was
9,770 1bs (4,436 kg) and the gross static mass was 18,240 1b (8,281 kg).
The vehicle was free-wheeling and unrestrained at impact.

The vehicle impacted the barrier approximately 1.0 ft (0.3 m)
downstream of the joint between segments 3 and 4. The tire path on the
barrier face is shown in figure 80. The top of the path reached the top
of the barrier approximately 5.0 ft (1.5 m) downstream of the impact
point. Tire marks extended to the upper edge of the barrier for a
distance of over 60.0 ft (18.3 m) as shown in figure 8l. Marks were also
made on the rear of the barrier. Total Tlength of contact was
approximately 86.0 ft (26.2 m), The vehicle was redirected; however, it
rolled onto the barrier and slid off the end at about 1.224 sec. Maximum
roll was approximately 94 degrees. The speed of the vehicle at 1.000 sec
(end of data processing) was 54.1 mph (87.0 kph).

The barrier received damage extending from the downstream end of
segment 3 to the downstream end of the barrier (approximately 86.0 ft
(26.2 m)). Joints 3-4, 4-5, 5-6 and 6-7 were chipped and cracked. Damage
to the front offbarrier is shown in figure 8l. The top rear of segment 6
and the steel framework were scraped. Tire marks started on the top rear
of segment 7, moved albng the rear of segment 8 and ended near the ground
1.8 ft (0.6 m) upstream of joint 9-10. The rear of segment 10 was
scraped. The barrier showed no measurable sign of movement. '

The vehicle was severely damaged. The U-bolts attaching the axle to
the frame were broken and the frame was bent. The motor mounts, springs
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and shack¥es were severly damaged. The vehicle is shown in figures 82 and
83. ‘

Test Results
A summary of test data is presented in figure 84. Figure 85 consists
of sequential photographs. Vehicle accelerometer traces are displayed in
figures 86 through 88, and vehicle angular displacement in figure 89.

The maximum 50-msec average accelerations were -1.7 ¢ 10ng1tudina1
‘and -8.4 g lateral. Maximum 50-msec average vector resultant acceleration
was 8.6 g. |

NCHRP Report 230 describes occupant risk evaluation criteria and
places 1imits on these for acceptable performance for tests conducted with

(3)

standard passenger automobiles at 15-degree impact angles. These
acceptance limits do not apply to the test reported herein, but were
computed and reported for information only. The normalized

occupant/compartment impact velocity in the longitudinal direction was 7.3
fps (2.2 m/s), and 10.0 fps (3.1 m/s) in the lateral direction. The
maximum 10 msec average longitudinal occupant ridedown acceleration was
-2.9 g, and -15.9 g for the lateral direction. ‘

The barrier redirected the vehicle and detached elements did not
penetrate the occupant compartment. However, the vehicle rolled onto the
barrier and subsequently slid off the end of the barrier and came to rest
on its left side. Vehicle change in speed at 1.000 sec after impact was
6.0 mph (9.7 kph).

oo
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Barrier Front

Rear View of Bérrier
Figure 77. Barrier befare test 3825-17.
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Vehicle before test 3825-17.

Figure 78.
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Front of Barrier

Rear Siﬂe of Barrier

Figure 81, Barrier after test 3825-17.
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Figure 82. Vehicle after test 3825-17.
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Figure 83. Vehicle after being uprighted
(After test 3825-17)
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‘0.257 sec

Figure 85. Sequential photographs for test 3825-17.
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0.600 sec

\‘1/
Figure 85. Seguential photographs for test 3825-17 (continued).
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LONGITUDINAL ACCELERATION (G)

Class 180 Filter
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Figure‘86. Vehicle longitudinal accelerometer trace
for test 3325-17.
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Figure 87.

for test 3825-17.
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VERTICAL ACCELERATION (G)
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Figure 88, Vehicle vertical accelerometer trace
for test 3825-17.
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Y AW Axes are vehicle fixed.

1 Yaw

‘ . BLTCH Xed
\‘\i\\ : Sequence for determining
<:__::> {‘::jy;ie—” orientation is:

= v
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L
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u_.g Yaw
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—
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_c
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el
Roll
o
o
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> e
]
Figure 89, Vehicle angular displacements for test 3825-17.
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-~ IIT. DISCUSSION OF TESTS

The results of all tests with regard to roll stability are given by
table 2. Examination of table 2 and the Data Summary sheets, figures 90
through 97, show that the test vehicles remained stable, subject to only
small roll angles in all tests except 3825-15 and 3825-17. The tests
where the vehicle remained stable included 7-degree and 15-degree tests of
the Ford Bronco, a 15-degree test of the Datsun pickup, 7-degree and
- 15-degree tests of the 1977 Ford pickup and a 15-degree test of the
Chevrolet pickup. In all these tests barrier deflection was very small,
varying from 0.05 to 0.14 ft (0.02 to 0.04 m) laterally at the extreme top
of the barrier.

Study of the test films reveals in tests conducted at the 7-degree
impact angle the vehicle would never completely lose contact with the road
or shoulder surface plane. The left (contact) side of the vehicle would
ride up on the barrier less than two ft (0.6 m), the right front wheel
would usually come slightly off the shoulder plane but the right rear
wheel would maintain contact throughout the event, See the high speed
photo sequence in figure 90.

This was not true for the l5-degree tests. In these the vehicle
would completely lose contact with the shoulder plane, as shown in figure.
96, but would remain in a low roll angle condition and be stable on
returning to the surface. The following occurs: during the time the left
front (contact side) and left rear wheel are receiving an upward thrust
from the barrier, the right rear wheel is still in contact with the ground
plane. A major vertical thrust is generated on this wheel by the roll
motion of the vehicle. This thrust counteracts the rolling impulse. The
vehicle springs -on the right rear are first compressed and then rebound as
the vehicle becomes airbaorne. The net result of the cycle of
- destabilizing and stabilizing vertical forces is a vehicle with a small
net roll angle and roll velocity. Assuming vehicle yaw and pitch are not

large, the vehicie should be relatively stable.

| In two tests, the vehicle was not stable. The first, 3825-15, the
1974 Ford pickup at a 22-degree impact angle, may not be typical of an
impact with a rigid CMB. The reason for this is that the adapted
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temporary barrigr was not rigid. The dynamic deflection of the top of the
impacted barrier segment moved 0.63 ft {0.19 m). This means the slope of
the upper plane of the CMB face increased from 6 degrees to 18 degrees,
providing a plane that produced much more 1ift to the vehicle contact side
than would occur had the barrier top not deflected laterally. Analysis of
high speed films indicates this as one probable cause of the destabilizing
force that produced a ninety degree vehicle roll away from the barrijer.
Another factor is the rotation of segment 4 with respect to segment 5, as
shown in figure 58, which formed a discontinuity at the joint. This
exposed corner appears to have caused an uplifting force as the wheel
traversed it. The increase in impact angle from 15 degrees toc 22 degrees,
while producing the force necessary to deflect this barrier, is probably
not a critically destabilizing factor during impact with a rigid CMB, as
several stable 25-degree automobile tests have indicated.

The final test, an 18,240 1b (8,281 kg) straight truck at 60 mph
(97 kph) and 20 degrees, was an obvious unstable condition. This was due
to the fact the box-van body was lcaded uniformly producing a resultant
c.g. height of nearly five feet (58.2 in. (147.8 cm)). Since the barrier
height is 32 in (B8l1.3 cm), there is a destabilizing moment about the
center of gravity develgped by the barrier resisting force. As the truck
rotates into the barrier, the moment arm would initially be almost five
feet (1.5 m) when the wheels first contact the lower revealment of the
CMB. As the interaction proceeded this arm would decrease to about two
feet (0.6 m).‘ In any case, box-van straight trucks loaded uniform]y'are
distinctly unstable during a CMB impact. Many rental units loaded with
household goods and furniture are in this load condition. This is also
illustrated by the extremely low value of T/2H. Table 1 shows this ratio
is 0.67, the lowest of all vehicles tested.

. The sequen€§a1 photographs of figure 95 (Test 3825-15) and figure 97
(Test 3825-17) illustrate the two modes of roll instability: 1) Roll away
from the barrier, also a failure mode during some tests of very small
cars, and 2) Roll into and over the barrier, also a failure mode of
large trucks (80,000 1b (36,320 kg) tractor semitrailers) with relatively
high trailer centers of gravity. .

It appears that utility vehicles and pickups that do no exhibit
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excessive-sprung mass elevation by special wheels and suspensions may not
be unstable during many CMB collisions, although without conducting
25-degree impact angle tests this statement is not fully Supported. In
contrast, it seems apparent that straight trucks with high c.g. values

have a critical capacity to roll.

|' Jt'
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- IV. VEHICLE INERTIAL AND SUSPENSION PROPERTIES

The test—vehicle inertial properties (mass moments of inertia, mass
and center of gravity) were measured by TTIl using the Mobile Parametric
Measurement Device (MPMD). This device is a vehicle property measurement
system contained on a flat-bed trailer and on loan to TTI by the NHTSA,
Vehicle suspension rates (spring rates effective at wheel center) were
also measured. Table 3 lists all measured values. The test methodology
for these measurements 1is explained following this table, along with
photographs of the testing being performed {figures 98 through 103).

|'|I[
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- Test Methodology
Vehicle Sign Cénvention:

_y +PITCH .vAw

<
@ JROM- ;
/
Longitudinal C.G.:

The vehicle was weighed on precision NBS traceable scales to
determine the iongitudinal C.G. '

a ='r
~ - 48
Where: a = Longitudinal (x) distance from front axle to C.G.
Fr = Rear axle weight
W = Total vehicle weight
WB = Wheel Base
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Lateral 6=G.: _
The standard assumption that the lateral C.G. was located in the XY

plane was made.

Vertical C.G.: .
The vehicle was weighed on precision NBS traceable scales in a tilted

position and the weight transfer used to determine the vertical height of
the C.G.

(Ff)(cose)(a o, sing)

o= W {s7n8)

where: H =  Vertical C.G. height above ground
g = Angle of Tilt
re = Tire radius
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Ro1l and™Pitch_Mass Moment of Inertia:

The vehicle was mounted on an inverted pendulum and was set into
oscillation about a given fixed axis (longitudinal for roil, transverse
for pitch). The restoring moment was provided by a matched pair of
springs acting on opposed moment -arms. The characteristic period of
oscillation for the system was measured and the moments of inertia of the
vehicle calculated. ' '

(Pitch shown)

2 . - 2 2
L. 2Ke? - MH =M Ho _, _MHZ M OHZE L,
4 n g g
where: I z Mass Moment of Inertia About Venicle C.G.

Either Ixx = Rg]l or Iyy = Pitch

=
i

Mass of vehicle

c
MS = Mass of support structure
H f‘ CG Heights of support structure above axis of rotation
t T Period of oscillation |
Is z Mass moment of inertia of support structure about it's
C.G. (Is = Roll; IS = Pitch)
X M
K S Spring Rate
L E Moment arm length

134



Yaw Mass Moment of Inertia

The vehic¢Te was mounted on a torsional pendulum and was set into
oscillation about an axis passing through the vehicle C.G. The restoring
moment was provided by a matched pair of springs acting on a moment arm.
The characteristic period of oscillation for the system was measured and
the moments of inertia of the vehicle calculated.

L ok

—— A\ S
&
— JL -~

2z 272 Sz
Where: Izz = Mass moment of inertia about vehicle CG in yaw
T = . - Period of oscillation
IS z Mass moment of inertia of support structure about
z

it's C.G. in yaw

TRy

135



SUSPENSION RATES: v ‘

The vehicle was weighed on precision N.B.S. traceable scales and the
distance from a fixed reference point on the body to the wheel center was
measured. Ballast was added to the vehicle, and measurements repeated,
until the suspension bumpers were encountered. Measurements were also
taken while weight of the vehicle was progressively supported until full
suspension extension was obtained. This was repeated for all wheels and
values were averaged for assumed x - z plane symmetry {(i.e.: LF & RF; LR
& RR) '

Effective'suspension rate = AF

&h
where:
FLF = Measured weights at wheel (i.e.: LF)
h fE- Distance to referenée
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Figure 98. 1974 Ford F250 pickup setup for roll

(Ixx) MMI measurement.

L F
./ b
dl/- ;".-a't\ = -

1 -

Figure 99. Vertical C.G., determination an
1972 Chevy 4WD pickup.
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Figure 100. 1974 Datsun pickup setup for pitch
(Iyy) MMI measurement.

Figure 101. Data acguisition and reduction system.
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Figure 102. Measurement of 1979 Ford LN 700 straight truck.
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Figure 103. Method of immobitizing
suspension during measurements.
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“=  __ V. ANALYSIS QF SUSPENSION DAMAGE

Damage Modes and Severity Levels
Damage to a vehicle's suspension system when it comes into contact

with a barrier is of concern for three major reasons. The post-impact
trajectory can be affected by suspension damage since the vehicle might
not behave normally after Tleaving the barrier. Damage might also
interfere with attempts by a driver to regain control of the vehicle after
it leaves the barrier. Most importantly, sufficient damage might cause a
rollover of the vehicle subsequent to barrier impact. The likelihood of
each of these scenarios occurring depends to a great extent on the
severity of damage.

Damage to various components of the suspension affect the vehicle
differently. Damage to the tire usually results in an air-out. This
lowers the ride-height of the vehicle and changes its attitude. The
rolling resistance of the tire increases dramatically, resuiting in an
unsymmetrical force on the vehicle, while the ability of the tire to
produce side force 1is extremely low. This results in a decrease in
control for the driver. Problems may also arise if the vehicle is
required to traverse soft terrain and/or terrain irregularities with a
flat tire. |

The next component to be damaged is usually the wheel rim/assembly.
Effects of damage can range from difficulty in control for light damage to
lack of control for heavy damage. Different wheels exhibit varying
types of damage during barrier impacts. One piece wheels may sustain
large amounts of deformation to the rim before the welds connecting the
rim to the center section will fail. If sufficient deformation occurs a
tire air-out will result, Other suspension members (axle, control arms)
will usually fail before the center section. Multi-piece wheels have
varying types of construction. Those found on medium duty trucks and
buses may have a center-spoked section bolted to an outer rim. On barrier
impacts, these bolts often contact the barrier face, causing them to
shear. This permits the rim/tire assembly to break free from the wheel
center section, This can lead to lock-up of the suspension and/or
steering systems and creates a situation conducive to vehicle rollover.
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An air-out of the tire does not necessarily occur in this case.

For very severe impacts the supporting suspension members such as
control arms, steering links, springs or spring supports may be damaged.
Damage to these parts may cause problems ranging from lack of control to a
rollover situation, depending on their severity. Details of suspension
systems vary widely, and analysis of a particular system is necessary to
pin-point specific weaknesses.

The following section contains a description of the damage to each
test vehicle, along with photographs of the damaged suspensions. After
this, a listing correlating impact severity and damage classification is
provided. 1Impact severity is as defined in NCHRP Report 230.¢3) The
damage classifications are four basic groups, subjectively defined as
follows:

1. no significant damage, controllable

- Damage to the vehicle suspension is slight, and not enough
to prevent a driver from remaining in control,

2. significant damage, probably controlilable

- Damage to the vehicle suspension probably inhibits driver
control to some degree. Possibility of vehicle roliover
due to rim contact with the ground, if the tire airs out.

3. significant damage, probably uncontrollable

- Damage to the vehicle suspension probab]yrprevents driver
from controlling vehicle. Increased probability of vehicle
rollover.

4. major damage, definitely uncontrolliable.

- Damage to the vehicle suspension is severe, with no c¢hance
for driver control, and a high probability for vehicle
rollover.

Also shown in the listing is a normalized impact severity, which is the
impact severity divided by=vehic1e weight. Comparison plots of impact
severity and damage class, and normalized impact severity and damage class
are also provided.
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Descriptten of Suspension Damage to Test Vehicles

Test 3825-10
1966 Ford Bronco 7 60 mph 7-degree angle
There was no significant damage to the suspension of the vehicle,

Test 3825-11

1966 Ford Bronco 60 mph 15-degree angle

There was significant damage to the suspension of the vehicle on this
test, as documented in figure 104. The left front control arm was bent
out of line approximately 6 in (15 cm). This appears to be a
column-buckling type failure due to the longitudinal loading from impact.
This buckling allowed a rearward displacement of the left. side of the
solid axle of approximately 2 in (5 c¢cm), There was no apparent damage to
the frame. The left front wheel rim was damaged sufficiently to cause an
air-out of the tire. The suspension damage was probably not severe enough
to prevent a driver from regaining control after redirection.

Test 3825-12

1974 Datsun Pickup 60 mph 15-degree angle

There was significant damage to the suspension of the vehicle on this
test, as documented in figure 105, The left front lower control arm was
bent rearward approximately 3 in (8 cm) at its attachment to the spindle.
The tie strut bracket on the lower control arm was severly deformed and
partially separated from the arm. Both of these failures appear to be
from the longitwdinal loading from impact. There was a smali amount of
deformation to “the left front wheel rim, however the tire was cut and
punctured. This démage was probably not severe enough to prevent a driver
from regaining control after redirection.
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Figure 104. Damage to 1966 Ford Bronco
suspension in test 3825-11,
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Figure 105. Damage to 1974 Datsun pickup
suspension in test 3825-12,

145



Test 3825~13

e

1974 Ford F250 Pickup 60 mph 7-degree angle
There was no significant damage to the suspension of the vehicle.

Test 3825-14
1974 Ford F250 Pickup 60 mph 15-degree angle

- There was significant damage to the suspension of the vehicle on this
test, as documented in figure 106, The left side I-beam was severly bent
rearward outside of the control arm attachment, and bowed downward inboard
of the control arm. The maximum deviation from the original relatively
straight shape was about 6 in (15 cm). The rearward force of jmpact
caused the outward bend, while the sideward force caused the column
. buckling type failure (bowing). The control arm was relatively undamaged,
showing only a slight compression deformation. The split ring detached on
both front wheels allowing both tires to deflate. The deformation in the
[-beam allowed the left front wheel to move rearward sufficiently to
heavily contact the wheel well. This damage was probably sufficient to
cause driver control problems after redirection.

Test 3825-15
1974 Ford F250 Pickup 6C mph 22-degree angle
There was major damage to the suspension of the vehicle on this test,

documented in figure 107. The left front suspension was detached from the
frame at all points except the inboard I[-beam pickup point. The left
[-beam suffered deformation similar to that in Test 3825-14, except to a
greater degree. The left control arm suffered some compression
~ deformation befgre its rear attachment- bracket bolts (2) failed in shear.
This permitted “the shock to pull free and the spring to be pulled away
from the top perch. The left front wheel rim and split ring was severily
damaged, allowing an air out. The vehicle rolled after loss of contact
with the barrier. The suspension damage was severe enough that a driver
would not have been able to control the vehicle and prevent the roll from
occurring,
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Figure 106. Damage to 1974 Ford F250 pickup
suspension in test 3825-14.
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Figure 107, Damage to 1974 Ford F250 pickup
suspension in test 3825-15,
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Figure 107. Damage to 1974 Ford F250 pickup °
suspension in test 3825-15 {continued).
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Test 3825~16
1972 Chevrolet 4WD Pickup 60 mph 15-degree angle
There was significant damage to the suspension of the vehicle on this
test, as documented in figure 108. The front of the left spring attaches
to the frame through a shackle. This shackle was bent sideways toward the
center of the vehicle by approximately 3/4 in (2 cm). The frame arch
above the axle on the left front was buckled, with the front spring
attachment approximately 2 in (5 cm) lower than originally. The
‘combination of these two deformations caused the left front leaf spring

leafs to separate horizontally and twist relative to their original
position. The shock/booster spring failed at the upper eyelet connection
to the shaft. The left front wheel was severely deformed and bent out of
plane due to contact with the barrier. The tire side wall was cut and
resulted in an air-out. The suspension damage was. probably not severe
enough to prevent a driver from regaining control after redirection.

Test 3825-17

1979 Ford LN 700 Straight Truck 60 mph 15-degree angle

There was major damage to the suspension of the vehicle in this test,
as documented in figure 109. The left front leaf spring failed about 18
in (46 cm) behind the front mount. The upper leaf fractured allowing the
front of the spring to become unattached to the frame, The inside element
of the rear spring attachment bracket was broken. -This indicates the
spring was not pulled out, but forced sideways through the bracket. The
rear end of the spring then pierced the transmission case. On the right
front, one of the U-bolts securing the spring to the drop axle failed.
The shackle that held the spring pack together failed, allowing the leafs
to separate hdPizontally., The left side frame rail was warped and
twisted. All the motor and transmission mounts were broken, permitting
the engine to set on the frame ¢ross-member. The steering arm (1-3/8 in
(3.5 cm) diameter) was sheared off where the pittman arm connects. The
left front wheel was not structurally damaged, and the tire held air, The
' suspension damage was severe enough that a driver would not have been able
to control the vehicle after redirection.
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Figure 108.

Damage to 1972 Chevrolet 4WD pickup
suspension in test 3825-16.
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Figure 109, Damage to 1979 Ford LN 700 straight truck
, suspension in test 3825-17.
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Figure 109,

Damage to 1979 Ford LN 700 straight truck
suspension in test 3825-17 (continued).
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Figure 109. Damage to 1979 Ford LN 700 straight truck
suspension in test 3825-17 {(continued)
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Predicting Suspension Damage

[t was considered of value to be able to predict suspension damage as
a function of impact conditions. In pursuit of this goal the damage
classes {1 through 4) previously described were defined using damage class
as the ordinate and two measures of impact severity as the abscissa.
Figures 110 and 111 were plotted using the data given in table 4. Figure
110 uses Impact Severity as defined in NCHRP Report 230.(3)

| i.e, 1.5. =W (Vsine)?
29

As might be expected damage increases as I1.S. increases. It appearé,
for vehicles weighing under 5,000 1bs (2,270 kg), a linear relationship
between Damage Class and [.S. is a fair representation of the data. There
is some indication that the line slope decreases radically or becomes

curvilinear as vehicle weight increases.

It must be récognized that the elevated energy level attributed to
the larger vehicles js simply due to their larger mass. Therefore it is
no surprise that the values for large vehicles are so much higher than for
the small, The question is whether the four sUsﬁension damage categories
are satisfactorially discriminate to justify conclusions based on these
figures. If they are, it might be possible to define a characteristic
suspension damage versus Impact Severity curve for every different motor
vehicle, given a great deal of test data. '

Figure 111 provides what may be a significant insight to suspension
damage among radically different sized vehicles, When the abscissa is
normalized by dividing [.S. by the vehicle weight, the order of plotting
the tests at Damage Class (or level) 4 is reversed. Now the largest
vehicles (80,000 1b (36,320 kg) tractor semitrailers} are at the lowest
normalized [.S.=l1evel while the smallest vehicles (F250 Pickup) are at the
fargest normalized level.

This phenomenon may be called "The Galileo Effect". In his book "Two
New Sciences", English tranmslation, p. 130 (see also ref 7), Galileo
states:
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— Table 4. Listing of Impact Severity and Damage Type
Vehicle Test Impact Severity IS Type of Suspension Damage
No. IS = (1/2) (w/9) W
(Vsing)2(ft 1b) (ft)
| 1966 Ford 3825-10 5,658 1.57 No significant .damage
Bronco Controllabie
1966 Ford 3825-11 27,770 7.72 Significant damage
Bronco Probably controllable
1974 Datsun 3825-12 20,270 8.33 Significant damage
Pickup Probably controllable
1974 Ford - 3825-13 6,313 1.41 No significant damage
F250 Pickup
1974 Ford 3825-14 29,640 6.60 Significant damage
F250 Pickup Probably uncontroilable
11974 Ford 3825-15 - 73,850 16.30 Major damage
F250 Pickup Definitely uncontrollable
1972 Chevy 3825-16 35,540 7.47 Significant damage
4WD Pickup Probably controllable
1979 Ford 3825-17 147,500 8.09 Major damage
Straight . Definitely uncontrollable
Truck -
1970 Ford DST (4) 172,180 8.49 Major damage
‘Wayne 66 P 3080-1 Definitely uncontrollable
School Bus ‘
1970 GMC DSI‘(4) 188,234 9.42 | Major Damage
Wayne €6 P 3115-T Definitely uncontrollable
School Bus
1980 Kenwarth | TTI (5) 425,660 5.30 Major damage
C500 Tractor | 2911-1 Cefinitely uncontrollable
and Tank -
Traiter
1981 Kenworth| TTI (6) 392,996 4.90 | Major damage :
and Van-Type | 2416-T Definitely uncontrollable
Trailer
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~—You can plainly see the impossibility of increasing
the Size of structures to vast dimensions either in
art or in nature; Tlikewise the impossibility of
building ships, palaces, or temples of emormous size
in such a way that their oars, yards, bDeams,
iron-bolts, and, in short, all their other parts will
hold together; nor c¢an nature produce trees of
extraordinary size because the branches would break
down under their own weight; so also it would be
impossible to build up the bony structures of men,
horses, or other animals so as to hold together and
perform their normal functions if these animals were
to be 1increased enormously in height; for this
increase in height can be accomplished only by
employing a material which is harder and stronger than
usual, or by enlarging the size of the bones, thus
changing their shape until the form and appearance of
the animals suggest a monstrosity . . . If the size of
a body be diminished, the strength of that body is not
diminished in the same proportion; indeed the smaller
the body the greater its relative strength. Thus a
small dog could probably carry on his back two or
three dogs of his own size; but I believe that a horse
could not carry even one of his own size.

What is true of animals seems also to be ftrue of motor vehicle

suspensions. Figure 111 indicates the probability that the larger the
vehicle the more sensitive the suspensign is to lateral ‘impact forces.

Front Suspensian Characteristics of School Buses

DUring the course of testing a number of school buses during the
1970's and 80's, primarily pre-1970 buses, researchers at Southwest
Research Institute noted some major differences in the way the front
suspensions of different bus makes were constructed. Figures 112, 113 and
114 show three ways leaf springs carrying the front or steering axle were
attached to the_frame. Figure 112 shows a common system of having a pin
support at the_front with slider to the rear. Figure 113 shows the
_reverse of 112, i.e. slider to the front, pin support at the rear. Figure
114 is somewhat similar to 112 except that it has a shackle to the rear in
place of the slider.

Crash tests of buses into concrete median barriers (CMB's) as shown
in figure 115 can produce loads on the impacting front wheel that will
cause structural damage to baoth wheel and suspension. In some cases the
front axle may be knocked completely out from under the bus. The main
loads produced by this kind of an impact are shown in figure 116,
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Figure 112. Leaf spring system (1): pin support
at front with slider to rear,

160




@I FRONT OF VEHICLE

5 Q O
=]

/ A N )

SLIDER

IRY

Figure 113.

Leaf spring system {2): slider at
front with pin support to rear.
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Figure 114, Leaf spring system (3): pin support
at front with shackle to rear.
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Figure 116. Main loads on the left ‘
front wheel impacting a CMB.
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_ szx*is é_Toment about the x axis in the zy plane tending to make the
wheel in contact with a CMB tuck under. Using the right hand rule this
would be a negative rotation about the x axis. The freedom of the vehicle
wheel to roll and the steering degree of freedom would preclude
development of major moments about the y and z axes respectively,

F_is a lateral force acting on the wheel in a horizontal direction
(approximately in a direction perpendicutar to the face of the barrier).
It is the major redirecting force during the first part of the collision.
Fx is a force in opposition to the movement of the wheel on the face. It
is due to friction or gouging of the wheel elements on the face of the
barrier. It acts primarily in the plane of the barrier face.

The major forces and moment acting on the left spring (Spring L of
figure 117) are transmitted from the wheels through the axle to the
spring. These forces and moment are in directions the same as those
specified on the wheel and are caused primarily by the forces on the
wheel. Figure 117 shows how these forces would be transmitted through the
axle to the leaf springs. |

These forces result in the following primary internal forces acting
on Sections A and B.

1. Pin Forward, Slider to Rear.

Section A. Torsion, Moment and Tension
Section B. Moment and Torsion
2. Slider Forward, Pin to Rear
Section A. Moment and Torsion
Section B. Torsion, Moment and Compression
3. Pin Forward, Shackle to Rear
~Section A. Torsion, Moment and Tension
Section B. Moment and Torsion

Comparison :_ef these three cases indicate 1 and 3 are quite similar
but both of these have a major difference from 2. In Case 2, a critical
spring section (Section B) is placed in compression while in Cases 1 and 3
the critical section (Section A) is placed in tension. Considering the
relatively small cross section, there is no doubt the compression
~situation 1is the most critical. A Tlocal buckling situation will be
produced if the rearward force Fx' becomes large enough. This type of
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Forces transmitted to the
impact side front leaf spring.
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failure is illustrated by figure 118. Another disadvantage of Case 2 is
that Case 2 —{slider forward) is the only one which can produce
disengagement of the spring from the forward support if the spring bends
in compression due to the force, Fx' (figure 117). It may be equally
“important to consider what happens if the bolts holding a pin bracket to
the frame are sheared. Such an occurrence is shown in figure 119, In
this case, if the pin bracket is forward, some support of the spring and
axle is still available from the rear slider or shackle (See figure 120).
This may be enough to hold the axle under the vehicle following a
collision. In contrast, if the pin bracket is to the rear its failure
allows the spring to move rearward and disengage from the front axle.
Neglecting support from steering linkage, the axle is then completely
unsupported on one side. This can lead to a progressive fajlure of
supports on the other end of the axle and complete loss of the steering
axle. This situation may make a roll more likely.

Although there are many ways front suspensions can fail when
subjected to the intense loads typical during impacts with CMB's, it does
appear the slider to the front case, as shown in figure 113, is more
sensitive to these loads, from the view point of structural geometry, than
are Cases 1 and 3, which move the pin to the front. It is this simple - a
leaf spring, when subjected to loads along its longitudinal axis can
support more tensile load than it can compressive load.

During the course of this contract examples of this slider forward
condition were sought for straight trucks. None were found., The only
examples of this found to date have been in pre-1970 school buses. The
writers feel strongly that this suspension configuration should be
discouraged.

|' h'
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Figure 119,
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